math
$$ y_i=ax_i^2+bx_i $$
$$ y_j=ax_j^2+bx_j $$
$$ y_ix_j=ax_i^2x_j+bx_ix_j $$
$$ y_jx_i=ax_j^2x_i+bx_ix_j $$
$$ y_ix_j-y_jx_i=a(x_i^2x_j-x_j^2x_i) $$
$$ a=\frac{y_ix_j-y_jx_i}{x_i^2x_j-x_j^2x_i} $$
$$ y_ix_j^2=ax_i^2x_j^2+bx_ix_j^2 $$
$$ y_jx_i^2=ax_i^2x_j^2+bx_jx_i^2 $$
$$ y_ix_j^2-y_jx_i^2=b(x_ix_j^2-x_i^2x_j) $$
$$ b=\frac{y_ix_j^2-y_jx_i^2}{x_ix_j^2-x_i^2x_j} $$